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Abstract

Contamination in computed numerical responses is unacceptable
for the modeling of unbounded soil. The wave absorbing boundary
is necessarily concave since the structure makes an indentation in the
semi-infinite domain. Shape functions for concave elements require a
higher order formulation than is required for convex shapes. Never-

theless, a smooth, integrable representation can be constructed.
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1 Introduction

Analysis of wave propagation in unbounded media requires the analysis of an
indented semi-infinite domain, figure 1. The boundaries of the finite element
mesh must as parallel as possible to the indentation to avoid interfering
with the wave propagation. The discontinuity between elements in finite
element discretization introduces spurious waves which mar the underlying

kinematics.



A formulation applicable to polygons with any number of sides, based on
rational polynomial shape functions, does not require tessellation [6]. Un-
fortunately the rational polynomial formulation is insufficient for domains
which exhibit geometrical concavity. The formulation is based on projective
geometry and no perspective transformation of any n-dimensional convex
shape can result in a 2-D concave shape [3]. Standard finite element text
books such as Zienkiewicz et al. do not cite any reference to displacement

based concave elements [7]

2 Soil-structure interaction using the cloning
algorithm

The cloning algorithm was conceived to generate (static) stiffness, mass and
dynamic stiffness matrices for unbounded media [2]. The accuracy of the
resulting matrices hinges upon a concavity requirement for the cells. The
outgoing wave behavior is overshadowed by spurious waves generated be-
tween the artificially constructed convex sub-element boundaries [4]. The
proposed concave cells allow for scaling and the resulting non-dimensional
frequency should satisfactorily capture the outgoing wave effects.

A general method for finding interpolations within a polygon is consid-
ered. Given the shape function requirements of smoothness, boundedness
and reproduction of constant and linear fields, a interpolation within a con-
cave element can be constructed.

A shape function must be zero valued at every node and boundary except

those adjacent to it. Let s;;(z,y) be a function which is zero along a boundary



segment ij. A function which is zero valued along every boundary except
the adjacent boundaries kI and Im is:
Tk(xvy) = H Sij(l',y)- (1)
ik & j#k
A shape function which satisfies the constancy requirement can be con-

structed simply:

ki I\
Ni(z,y) = % where Y Nj(z.y) = 1. (2)

Where k; are constants. For a rational polynomial formulation, applicable
to any convex polygon, the functions s;;(x,y) which are zero valued along a
boundary segment are linear.

A series of ellipses can be constructed such that a function is zero between
two points. In figure 2, the ellipse which passes through the point {—c,7*}
has the following equation in {z,y}:
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The resulting function for r in terms of x and y is zero valued from point a

(3)

to b and linear along the lines normal to the z-axis which pass through the

endpoints. Solving for r(z,y) and simplifying:
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Choosing the branch which satisfies the zero condition and is positive over

the domain and simplifying further results in the following function:
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The function is decidedly nonlinear.



Interpolations constructed on the bases of such elliptical contours can be

used to describe concave domains and consequently analyze wave absorbing

boundaries, see figure 3. The applicability of approximations to the shape

functions for the concave element is tested by comparison to the overall

behavior and relative to the boundary element Green’s functions [1, 5|.

Method

Weakness

Strength

Triangular or quadrilat-

eral mesh

e Requires mesh

e Not smooth

e Polynomial

Boundary element:

e Needs field equation solution
e Results along the boundary

are approximate

e No mesh

Wachspress element:

e Rational polynomial

e Convex shapes only

e No mesh

e Smooth

Proposed general element:

e [rrational polynomial

e No mesh
° Smooth
e Concave &

Convex

3 Conclusions

The wave propagation within the wave absorbing boundary is central to the

study of soil-structure interaction. For a building in unbounded media, such

as the earth, such a boundary is necessarily concave. The concave elements

are algebraically more complicated then their convex analog. Consequently,

computational tools including computer algebra are indispensable to the cre-

ation of a generic formulation which applies to any concave shape.
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Figure 1: Structure in a semi-infinite soil

Figure 2: Zero valued function from a to b
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Figure 3: Selected shape function for a concave element




